POSTGRADUATE PROGRAMME: COURSE OUTCOME

Name of the Programme: M.Sc. Chemistry

Name of the Class	Course Code	Course Title		Course Outcomes
		SEM	ESTE	R I
M.Sc. I	CCTP- 1 CHP- 110	Physical Chemistry-I (Fundamentals of Physical Chemistry)	CO1	After successfully completing this course, students will be able: to learn Thermodynamics parameters at different conditions.
			CO2	Explain the applications of colligative properties.
			CO3	Applications of quantum chemistry.
			CO4	Types of hybridization, idea of Valence bond theory and Molecular orbital theory.
			CO5	Huckel theory, applications to simple π - systems.
			CO6	basic concept in rate law equation.order of reactions.
			CO7	. Collision theory of bimolecules.
			CO8	Eyrings equation concept.
			CO9	Michaelis mechanism in enzyme catalyzed reactions.
			CO10	enzyme action and inhibition with examples.
			CO11	Maxwell- Boltzmann relationship
			CO12	Fermi-Dirac and Bose-Einstein statistics.
M.Sc. I	CCTP-2: CHI-130	Inorganic Chemistry-I	CO1	After successfully completing this course, students will be able to: Student should visualize/ imagine molecules in 3 dimensions.
			CO2	To understand the concept of symmetry and able to pass various symmetry elements through the molecule.
			CO3	Understand the concept and point group and apply it to molecules.
			CO4	To apply the concept of point group for determining optical activity and dipole

				moment.
			CO5	To understand product of symmetry
			003	operations.
			CO6	Student able to find out character for
			000	reducible representation.
			CO7	To know about projection operator.
			CO7	Apply projection operator to find out the
			CO8	normalized wave function for atomic
				orbital
			COO	
			CO9	Student should correlate the application
			CO10	of symmetry to spectroscopy.
			CO10	From the previous knowledge of
				symmetry student must able to find out
			GO11	which mode are IR active.
			CO11	Student should understand the detail
				chemistry of S and P block elements
				w.r.t. their compounds, their reactions
			CO12	and applications.
			CO12	To learn the advance chemistry of
				boranes, fullerene, zeolites, polymers
			CO12	etc.
			CO13	Organometallic chemistry of some
			CO14	important elements from the main
			CO15	groups and their applications
			CO16	
M.Sc. I	CCTP-	Organic	CO1	At the end of the course the students will
	3:CHO-	Chemistry-I		know and recall the fundamental
	150			principles of organic chemistry that
				include chemical bonding, nomenclature,
				structural isomerism, stereochemistry,
				chemical reactions and mechanism.
			CO2	They will understand the c riteria for
				aromaticity in nonbenzenoid molecules
				and other advanced polycyclic aromatics
			CO3	Understand the chemistry of monocyclic
				heterocycles, nomenclature and reactions
			CO4	Learn the concept stereochemistry and
				its importance; their rules and the
				concept of chirality.
			CO5	Understand the role of various reaction
				intermediates like carbocation,
				carbanion, carbenes, radicals, and
				nitrenes in organic reactions; concept of
				NGP.
			CO6	Able to describe mechanism of different
	1	1	1	rearrangement reactions. Appreciates the

		1		
				various steps involved in the molecular
				rearrangements.
			CO7	Understand the chemistry of Ylides.
			CO8	Use synthetic reagent of oxidation and
				reduction for solving the problems
			CO9	To understand some fundamental aspects
				of organic chemistry, to learn the
				concept aromaticity, to understand the
				various types of aromaticity.
			CO10	To study heterocyclic compound
				containing one and two hetero atoms
				with their structure, synthesis and
				reactions.
			CO11	To know stereochemistry of organic
				compounds; able to do interconversion
				of Fischer to Newmann, Newmann to
				Sawhorse and vice versa, Able to assign
				R and S to given molecules; understand
				stereoselective and stereospecific
				reactions; acquire knowledge on topicity.
			CO12	To study structure, formation, stability
				and related name reaction of
				intermediates like Carbocation,
				Carbanion, Free Radical, Carbenes and
				nitrenes; Recognize neighboring group
				participation.
			CO13	To study rearrangement reaction with
				specific mechanism and migratory
				aptitude of different groups.
			CO14	To study Ylides and their reaction.
			CO15	To understands the basis of redox
			0010	reaction; acquire knowledge about the
				reagents which causes selective
				oxidation
			CO16	reduction in various compounds; learn
				the basic mechanism of oxidation /
				reduction in organic compounds.
M.Sc. I	CBOP-1:	General	CO1	The goal of this course is to introduce
1,1,50, 1	CHG –	Chemistry-I		students to fundamental concepts in
	190			Chemical Biology and methods of
				chemistry used to solve problems in
				molecular and cell biology. After
				completion of this course, successful
				students will.
			CO2	Students will be able to explore new areas
			1002	of research in both chemistry and allied
				fields of science and technology.
]		Tierus of science and technology.

			CO3	Students will be able to function as a member of an interdisciplinary problem
			CO4	solving team. To impart the students thorough idea in the chemistry of carbohydrates, amino acids, proteins and nucleic acids etc.
			CO5	Be able to describe the chemical basis for replication, transcription, translation and how each of these central processes can be expanded to include new chemical matter.
			CO6	Develop skills to critically read the literature and effectively communicate research in a peer setting.
M.Sc. I	CCPP-1: CHP-107	Practical Course – I	CO1	At the end of the course the students will know and recall the fundamental principles of organic chemistry that include research and development, further
			CO2	Determination of an order of a reaction.
			CO3	Application of Colorimetry and spectrophotometry.
			CO4	Study of Radioactivity.
			CO5	Green Chemistry principles and application in organic transformations.
			CO6	Application of few efficient catalyst in the organic reaction.
		SEM	ESTE	R II
M.Sc. I	CCTP-4: CHP-210	Physical Chemistry-II	CO1	At the end of the course the students will know and recall the fundamental principles of physical chemistry and inorganic chemistry oriented reactions and effects of parameters, in addition to

	1	ı		
				this student would be skilled in
				understanding
			CO2	Types of molecule on the basis of
				moment of inertia and rotational spectra.
			CO3	Spectroscopic technique such as Infra-
				red Spectroscopy, breakdown of the
				Born-Oppenheimer approximation,
			CO4	carbon dioxide laser and Applications.
			CO5	Quantum and classical theory of Raman
				effect.
			CO6	Electronic Spectroscopy of molecules
			CO7	radioactive decay and its characteristics
			CO8	Process of nuclear fission and fission.
M.Sc. I	CCTP-5:	Inorganic	CO1	Student should able to find out the no of
141.50. 1	CHI-230	Chemistry,		microstates and meaningful term
	230	Semester – II		symbols,
		Semester II		Construction of microstate table for
				various configuration.
			CO2	Hund's rules for arranging the terms
			CO2	according to energy.
			CO3	Student should know the concept of
			CO3	weak and strong ligand field.
			CO4	Student should know basic d-d
			CO4	transition, d-p mixing, charge transfer
			CO5	Spectra.
			COS	Interpretation of electronic spectra for spin allowed oh and td complexes using
				Orgel diagram.
			CO6	Understand the concept of spectro
			C00	chemical series and Nephelauxetic
				series.
			CO7	Various phenomenons of magnetism and
			COT	their temperature dependence.
			CO8	Various experimental methods to find
			CO8	out magnetic moment.
			CO9	
			(09	Understand the various Quenching of orbital angular momentum.
			CO10	Understand the various terms involved in
			CO10	
			CO11	magnetochemistry. Should able to solve numerical based on
			CO11	
			CO12	crystal field parameters.
			CO12	Interpretation of electronic spectra for
				spin allowed oh and td complexes using
			0012	Orgel diagram
			CO13	Role of metals in Metalloprotein and
				metalloenzymes.

			CO14	Importance and transport of metal ions
			CO14	Nerve impulse generation in rod cell of
			CO13	retina.
			CO16	Importance and function of Ca, Fe and
				Mg in metalloprotein.
M.Sc. I	CCTP- 6:CHO – 250	Organic Chemistry-II	CO1	Students should able to understand free radicals' formation, stability and reactivity and should also be able to use the basic understanding in writing probable reaction mechanisms.
			CO2	Students should able to write MO diagram for various olefinic compounds and should able to predict the products, the stereochemistry as well as should able to understand the preferred reaction pathways.
			CO3	Students should able to calculate \(\precedef \) max of organic compounds containing more than one and less than four conjugated systems. Students should able to correlate IR bands with functional groups using numerical data as well as spectral data.
			CO4	Students should able to solve 1H-NMR problems and should also able to draw the 1H-NMR spectrum for simple organic compounds mentioning multiplicity pattern and coupling constant with the help of "Tree Diagram" Should able to predict and analyze the multiplicity patterns with more than one coupling constants.
			CO5	Students should able to use 13C-NMR data to interpret the structure NMR problems and should also able to draw the 1H-NMR spectrum for simple organic compounds mentioning multiplicity pattern and coupling constant with the help of "Tree Diagram" Should be able to predict and analyze the multiplicity patterns with more than one coupling constants.
			CO6	Students should know various key factors responsible for the spectroscopic data acquisition and should able to solve Problems based on UV, IR, MS, 1H-NMR,13CNMR.

			CO7	MOT and will be able to extend this in predicting reaction mechanism and Stereochemistry of electrocyclic reactions.
			CO8	The concepts in free radical reactions, mechanism and the stereo chemical outcomes
			CO9	The basic principle of spectroscopic methods and their applications in structure elucidation of organic compounds using given spectroscopic data or spectra.
M.Sc. I	CBOP-2: CHG – 290	General Chemistry -II	CO1	The goal of this course is to introduce students to fundamental concepts in Chemical Biology and methods of chemistry used to solve problems in molecular and cell biology. After completion of this course, successful students will:
			CO2	Students will be able to explore new areas of research in both chemistry and allied fields of science and technology.
			CO3	Students will be able to function as a member of an interdisciplinary problem solving team.
			CO4	To impart the students thorough idea in the chemistry of carbohydrates, amino acids, proteins and nucleic acids etc
			CO5	Be able to describe the chemical basis for replication, transcription, translation and how each of these central processes can be expanded to include new chemical matter.
			CO6	Develop skills to critically read the literature and effectively communicate research in a peer setting.
			CO7	Describe the importance of chemical biology research and interdisciplinary work.
	CCPP-2: CHP-227	Practical Course-II	CO1	This course is designed to make students aware of how to perform organic compounds in laboratory.

			CO2	The course includes synthesis of some derivatives and organic compounds, which will help them while working in research laboratory in future.
			CO3	Making derivatives of organic compounds will help them in industry or while doing research in medicinal chemistry for Drug development.
			CO4	This practical course is also designed to make student aware of green chemistry and role of green chemistry in pollution reduction.
			CO5	The students learn how to avoid solvents and do solvent free reaction.
			CO6	Also the work-up procedure in many experiments is made more eco-friendly to environment.
		SEMI	ESTEI	RIII
M.Sc. II	CCTP-7, CHO-350	Organic Reaction Mechanism and Biogenesis	CO1	After successfully completing this course, students will be able to:
		Diogenesis	CO2	Explain the Reaction Mechanisms.
		Biogenesis	CO2	Free radical generation, stability and their application.
		Biogenesis	CO2	Free radical generation, stability and
		Biogenesis		Free radical generation, stability and their application. Cleavage of C-Heteoatom and formation
		Biogenesis	CO3	Free radical generation, stability and their application. Cleavage of C-Heteoatom and formation of free radicals. Linear Free Energy Relationships with Hammet equation, deviation and effects
		Biogenesis	CO3 CO4 CO5 CO6	Free radical generation, stability and their application. Cleavage of C-Heteoatom and formation of free radicals. Linear Free Energy Relationships with Hammet equation, deviation and effects of substituents on the ring. Insight of alkaloids, Terpenoids and
M.Sc. II	CCTP-8, CHO-351	Structure Determination of Organic Compounds by	CO3 CO4 CO5	Free radical generation, stability and their application. Cleavage of C-Heteoatom and formation of free radicals. Linear Free Energy Relationships with Hammet equation, deviation and effects of substituents on the ring. Insight of alkaloids, Terpenoids and The Shikimate pathway. Alkaloids isolated from the Roots of
M.Sc. II	*	Structure Determination of Organic Compounds by Spectroscopic	CO3 CO4 CO5 CO6 CO1	Free radical generation, stability and their application. Cleavage of C-Heteoatom and formation of free radicals. Linear Free Energy Relationships with Hammet equation, deviation and effects of substituents on the ring. .Insight of alkaloids, Terpenoids and The Shikimate pathway. Alkaloids isolated from the Roots of Piper nigrum. After successfully completing this course, students will be able to: Explain principles of NMR techniques. NOE and its application.
M.Sc. II	*	Structure Determination of Organic Compounds by	CO3 CO4 CO5 CO6 CO1 CO2 CO3	Free radical generation, stability and their application. Cleavage of C-Heteoatom and formation of free radicals. Linear Free Energy Relationships with Hammet equation, deviation and effects of substituents on the ring. Insight of alkaloids, Terpenoids and The Shikimate pathway. Alkaloids isolated from the Roots of Piper nigrum. After successfully completing this course, students will be able to: Explain principles of NMR techniques. NOE and its application. APT, DEPT and INEPT techniques.
M.Sc. II	*	Structure Determination of Organic Compounds by Spectroscopic	CO3 CO4 CO5 CO6 CO1	Free radical generation, stability and their application. Cleavage of C-Heteoatom and formation of free radicals. Linear Free Energy Relationships with Hammet equation, deviation and effects of substituents on the ring. .Insight of alkaloids, Terpenoids and The Shikimate pathway. Alkaloids isolated from the Roots of Piper nigrum. After successfully completing this course, students will be able to: Explain principles of NMR techniques. NOE and its application. APT, DEPT and INEPT techniques. Elucidation of organic compounds,
M.Sc. II	*	Structure Determination of Organic Compounds by Spectroscopic	CO3 CO4 CO5 CO6 CO1 CO2 CO3	Free radical generation, stability and their application. Cleavage of C-Heteoatom and formation of free radicals. Linear Free Energy Relationships with Hammet equation, deviation and effects of substituents on the ring. Insight of alkaloids, Terpenoids and The Shikimate pathway. Alkaloids isolated from the Roots of Piper nigrum. After successfully completing this course, students will be able to: Explain principles of NMR techniques. NOE and its application. APT, DEPT and INEPT techniques.

				NOESY, ROESY (b) Heteronuclear:
			007	HSQC, HMQC and HMBC techniques.
			CO7	Principles of Mass Spectrometry
			CO8	ionization methods like EI, CI, ES,
			COO	MALDI and FAB-Fragmentation.
			CO9	Isotopic Abundance in structure
			CO10	establishment.
			CO10	Analysis of Biomolecules.
			CO11	Structure elucidation using UV using different techniques.
M.Sc. II	CCTP-9,	Stereochemistry	CO1	After successfully completing this
	CHO-352	and Asymmetric		course, students will be able to:
		Synthesis of		Stereochemistry of polysubstituted
		Organic		cyclohexane, six membered rings with
		Compounds		SP2 carbon, heterocycles with N and O.
			CO2	stereochemical principles involved in
				reactions of six membered rings and
				other than six membered rings.
			CO3	Stereochemistry of fused and bridged
			~	ring systems.
			CO4	Nomenclature, synthesis; stereochemical
			~~~	aspects of Perhydrophenanthrene.
			CO5	Perhydroanthracene, hydrindane,
			001	Steroids; Bridged system.
			CO6	Conformations of substituted
				cyclohexanes.
			CO7	Determination of configuration,
			CO8	Resolution and analysis of stereomers -
				formation of racemization and methods
				of resolution.
			CO9	Asymmetric Synthesis, Chirol pool and
				Chiral auxillaries.
			CO10	Transition Metal-Catalyzed
				Homogeneous Asymmetric
				Hydrogenation.
			CO11	Transition Metal-Catalyzed
				Homogeneous Asymmetric
				Hydroxylation and Epoxidation
M.Sc. II	СНО-	Designing Organic	CO1	After successfully completing this
	353(B)	Syntheses and		course, students will be able to explain:
		Heterocyclic Chemistr		Concepts of Retrosynthesis
			CO2	Retrosynthetic analysis.
			CO3	disconnection approach, Synthons,
				multiple step synthesis.

			CO4	Retrosynthesis and synthesis of following Molecules: Strychnine, Reserpine, Thienamycin, Asteltoxin, Indolizomycin, Erythronolide B.
			CO5	Systematic nomenclature monocyclic, fused and bridged heterocycles.
			CO6	General chemical behaviour of heterocyclic compounds and their applications.
			CO7	Common Methods in Ring Synthesis of Aromatic Heterocyclic Systems.
	CCPP-3, CHO-354	Practical-I Solvent Free Organic Synthesis	CO1	After successfully completing this course, students will be able to: Explain Solvent Free Carbon–Carbon Bond Formation.
			CO2	Solvent-Free C–N Bond Formation
			CO3	Solvent-Free C–S Bond Formation
			CO4	Solvent-Free C–X Bond Formation
			CO5	Solvent-Free N–N Bond Formation
			CO6	Solvent free supramolecular assembly formation
	<u>'</u>	SEME	ESTE	RIV
M.Sc. II	CCTP- 10, CHO- 450	Chemistry of Natural Products	CO1	After successfully completing this course, students will be able to learn: Understanding and planning of total synthesis while maintaining the stereochemistry.
			CO2	Explain total Synthesis Hirsutellone.
MCatt	CCTD	Ongon caracta 11:	CO3	Explain total Synthesis Ribisins.
M.Sc. II	CCTP- 11, CHO- 451	Organometallic Reagents in Organic Synthesis	CO1	After successfully completing this course, students will be able to: Explain use of transition metal complexes in organic synthesis.
			CO2	Explain C=C formation reactions.
			CO3	Illustration of Ring formation reactions.

ck chemistry:
eaction.
Metathesis.
Boron and Silicon
synthesis
5 y Hui C 515
ation and
culture ponds.
ethods of packaging
and brood fish.
s of fish harvesting,
cessing.
ques used in fishery
1
completing this
ll be able to:
biological catalyst
f drug design,
ses and Drug
equencing and
apeutics.
Oxamniquine.
inetics and
nd activity Relationship:
on.
completing this
ll be able to:
ploy concept of type separation
eparation
estimation of
Ostimution Oi
l the separated
nesis.
ts from the natural
l oils from the natural
i ons nom me natural

			CO7	Isolation of medicinally important component from the natural products
			CO8	Students should carry out a small research project.
			CO9	Becomes familiar with i. Literature survey, research methodologies, Column and TLC chromatographic techniques
M.Sc. II	CCPP-04, CHO- 454: Practical-	Convergent and Divergent Organic Syntheses	CO1	After successfully completing this course, students will be able to: Learn convergent Synthesis involving acylation, reduction.
	II:		CO2	Divergent Synthesis involving acylation, nitration, One pot synthesis,
			CO3	Resolution technique)
			CO4	Sulfonation reaction
			CO5	Three Stage Syntheses.